Entrer un problème...
Algèbre linéaire Exemples
, ,
Étape 1
Étape 1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.2
Remettez dans l’ordre et .
Étape 1.3
Soustrayez des deux côtés de l’équation.
Étape 1.4
Remettez dans l’ordre et .
Étape 1.5
Soustrayez des deux côtés de l’équation.
Étape 2
Représentez le système d’équations dans le format de matrice.
Étape 3
Étape 3.1
Write in determinant notation.
Étape 3.2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Étape 3.2.1
Consider the corresponding sign chart.
Étape 3.2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 3.2.3
The minor for is the determinant with row and column deleted.
Étape 3.2.4
Multiply element by its cofactor.
Étape 3.2.5
The minor for is the determinant with row and column deleted.
Étape 3.2.6
Multiply element by its cofactor.
Étape 3.2.7
The minor for is the determinant with row and column deleted.
Étape 3.2.8
Multiply element by its cofactor.
Étape 3.2.9
Add the terms together.
Étape 3.3
Multipliez par .
Étape 3.4
Évaluez .
Étape 3.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3.4.2
Simplifiez le déterminant.
Étape 3.4.2.1
Simplifiez chaque terme.
Étape 3.4.2.1.1
Multipliez par .
Étape 3.4.2.1.2
Multipliez par .
Étape 3.4.2.2
Soustrayez de .
Étape 3.5
Évaluez .
Étape 3.5.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 3.5.2
Simplifiez le déterminant.
Étape 3.5.2.1
Simplifiez chaque terme.
Étape 3.5.2.1.1
Multipliez par .
Étape 3.5.2.1.2
Multipliez par .
Étape 3.5.2.2
Additionnez et .
Étape 3.6
Simplifiez le déterminant.
Étape 3.6.1
Simplifiez chaque terme.
Étape 3.6.1.1
Multipliez par .
Étape 3.6.1.2
Multipliez par .
Étape 3.6.2
Soustrayez de .
Étape 3.6.3
Additionnez et .
Étape 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Étape 5
Étape 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Étape 5.2
Find the determinant.
Étape 5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Étape 5.2.1.1
Consider the corresponding sign chart.
Étape 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 5.2.1.3
The minor for is the determinant with row and column deleted.
Étape 5.2.1.4
Multiply element by its cofactor.
Étape 5.2.1.5
The minor for is the determinant with row and column deleted.
Étape 5.2.1.6
Multiply element by its cofactor.
Étape 5.2.1.7
The minor for is the determinant with row and column deleted.
Étape 5.2.1.8
Multiply element by its cofactor.
Étape 5.2.1.9
Add the terms together.
Étape 5.2.2
Multipliez par .
Étape 5.2.3
Évaluez .
Étape 5.2.3.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2.3.2
Simplifiez le déterminant.
Étape 5.2.3.2.1
Simplifiez chaque terme.
Étape 5.2.3.2.1.1
Multipliez par .
Étape 5.2.3.2.1.2
Multipliez par .
Étape 5.2.3.2.2
Soustrayez de .
Étape 5.2.4
Évaluez .
Étape 5.2.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 5.2.4.2
Simplifiez le déterminant.
Étape 5.2.4.2.1
Simplifiez chaque terme.
Étape 5.2.4.2.1.1
Multipliez par .
Étape 5.2.4.2.1.2
Multipliez par .
Étape 5.2.4.2.2
Additionnez et .
Étape 5.2.5
Simplifiez le déterminant.
Étape 5.2.5.1
Simplifiez chaque terme.
Étape 5.2.5.1.1
Multipliez par .
Étape 5.2.5.1.2
Multipliez par .
Étape 5.2.5.2
Additionnez et .
Étape 5.2.5.3
Additionnez et .
Étape 5.3
Use the formula to solve for .
Étape 5.4
Substitute for and for in the formula.
Étape 5.5
Divisez par .
Étape 6
Étape 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Étape 6.2
Find the determinant.
Étape 6.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Étape 6.2.1.1
Consider the corresponding sign chart.
Étape 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 6.2.1.3
The minor for is the determinant with row and column deleted.
Étape 6.2.1.4
Multiply element by its cofactor.
Étape 6.2.1.5
The minor for is the determinant with row and column deleted.
Étape 6.2.1.6
Multiply element by its cofactor.
Étape 6.2.1.7
The minor for is the determinant with row and column deleted.
Étape 6.2.1.8
Multiply element by its cofactor.
Étape 6.2.1.9
Add the terms together.
Étape 6.2.2
Multipliez par .
Étape 6.2.3
Multipliez par .
Étape 6.2.4
Évaluez .
Étape 6.2.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 6.2.4.2
Simplifiez le déterminant.
Étape 6.2.4.2.1
Simplifiez chaque terme.
Étape 6.2.4.2.1.1
Multipliez par .
Étape 6.2.4.2.1.2
Multipliez .
Étape 6.2.4.2.1.2.1
Multipliez par .
Étape 6.2.4.2.1.2.2
Multipliez par .
Étape 6.2.4.2.2
Soustrayez de .
Étape 6.2.5
Simplifiez le déterminant.
Étape 6.2.5.1
Multipliez par .
Étape 6.2.5.2
Additionnez et .
Étape 6.2.5.3
Additionnez et .
Étape 6.3
Use the formula to solve for .
Étape 6.4
Substitute for and for in the formula.
Étape 6.5
Divisez par .
Étape 7
Étape 7.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Étape 7.2
Find the determinant.
Étape 7.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Étape 7.2.1.1
Consider the corresponding sign chart.
Étape 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Étape 7.2.1.3
The minor for is the determinant with row and column deleted.
Étape 7.2.1.4
Multiply element by its cofactor.
Étape 7.2.1.5
The minor for is the determinant with row and column deleted.
Étape 7.2.1.6
Multiply element by its cofactor.
Étape 7.2.1.7
The minor for is the determinant with row and column deleted.
Étape 7.2.1.8
Multiply element by its cofactor.
Étape 7.2.1.9
Add the terms together.
Étape 7.2.2
Multipliez par .
Étape 7.2.3
Multipliez par .
Étape 7.2.4
Évaluez .
Étape 7.2.4.1
Le déterminant d’une matrice peut être déterminé en utilisant la formule .
Étape 7.2.4.2
Simplifiez le déterminant.
Étape 7.2.4.2.1
Simplifiez chaque terme.
Étape 7.2.4.2.1.1
Multipliez par .
Étape 7.2.4.2.1.2
Multipliez .
Étape 7.2.4.2.1.2.1
Multipliez par .
Étape 7.2.4.2.1.2.2
Multipliez par .
Étape 7.2.4.2.2
Soustrayez de .
Étape 7.2.5
Simplifiez le déterminant.
Étape 7.2.5.1
Multipliez par .
Étape 7.2.5.2
Additionnez et .
Étape 7.2.5.3
Additionnez et .
Étape 7.3
Use the formula to solve for .
Étape 7.4
Substitute for and for in the formula.
Étape 7.5
Divisez par .
Étape 8
Indiquez la solution au système d’équations.